Situation of Storage and Treatment of Accumulated Water including Highly Concentrated Radioactive Materials at Fukushima Daiichi Nuclear Power Station (75th Release)

November 28, 2012
Tokyo Electric Power Company

1. Introduction
This document is to report the following matters in accordance with the instruction of “Installment of treatment facility and storing facility of water including highly concentrated radioactive materials at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company (Instruction)” (NISA No. 6, June 8, 2011), dated on June 9, 2011.

<Instruction>
TEPCO should report to NISA the situation of storing and treatment of the contaminated water in the Power Station and future forecast based upon the current situation have to be reported to NISA as soon as the treatment facility starts its operation. Also, subsequently, continued report has to be submitted to NISA once a week until the treatment of the accumulated water in the Central Radioactive Waste Treatment Facility is completed.

2. Situation of storing and treatment of accumulated water in the building (actual record)
Stored amounts in each unit building (Units 1 to 4 (including condensers and trenches)), and stored and treated amount in the Accumulated Water Storing Facility (including underpass area close to the High Temperature Incinerator Building), and other related data, as of November 27, are shown in the Attachment -1.

3. Forecast of storing and treatment
(1) Short term forecast
Water transfer is planned so that the levels of the accumulated water in Units 1&2 and Units 3&4 building will be maintained around at the level of OP. 3,000, based on the stored amount in the Accumulated Water Storing Facilities and the operating situation of the radioactive material treatment equipment. Water is transferred to the Process Main Building and/or High Temperature Incinerator Building as Accumulated Water Storing Facilities.

Treatment is implemented considering the situation of storage and transfer of Accumulated Water Storing Facilities.

We assume stored amounts in each unit building (Units 1 to 4 (including condenser and trench)),

1
and stored and treated amount in the Accumulated Water Storing Facilities (including underpass area close to the High Temperature Incinerator Building), and other related data as of December 4, as shown in Attachment -2.

(2) Middle term forecast

Regarding accumulated water in Unit 1&2 building and Unit 3&4 building, from the viewpoint of reducing the risks of discharging to the ocean and leaking into the groundwater, it is necessary to keep enough capacity for the accumulated water in the building until its level reaches OP. 4,000 and to keep the accumulated water level lower than the groundwater level. On the other hand, based on the view of limiting inflow of underwater to buildings and reducing the amount of emerged accumulated water, we are planning to transfer accumulated water keeping its level in the building around OP. 3,000 considering water tank capacity.

As for accumulated water of the Process Main Building and the High Temperature Incinerator Building, we are planning to treat the accumulated water considering the situation of construction of middle and low level waste water tanks, the operation factor of the radioactive material treatment instruments and duration for maintenance.

We forecast stored amounts in each unit building (Unit 1 to 4 (including condensers and trenches)), and storing and treatment situations in the Accumulated Water Storing Facilities (including underpass areas close to the High Temperature Incinerator Building) for 3 months, as shown in Attachment -3.

Stored amounts in each building and the water storage equipment are forecasted to be unchanged in case transfer and treatment were implemented as scheduled without rain. However, it would be subject to change depending on the operation factor of the radioactive material treatment instruments and so on.

Also, the water treated at the radioactive material treatment equipment (fresh water and condensed salt water) can be stored in the middle and low level waste water tanks.

END
Storage and treatment of high level radioactive accumulated water (as of November 20, 2012)

Classification

- High level radioactive water
- Treated water (plutonium)
- Treated water (concentrated saltwater)
- Treated water (freshwater)
- Concentrated saltwater

Storage volume

- Water level
- Change from last report
- Storage capacity

<table>
<thead>
<tr>
<th>Storage volume</th>
<th>Change from last report</th>
<th>Water level</th>
<th>Change from last report</th>
<th>Storage capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated water</td>
<td>200,530m³</td>
<td>1,112m³</td>
<td>213,100m³</td>
<td></td>
</tr>
<tr>
<td>Concentrated</td>
<td>25,716m³</td>
<td>3,826m³</td>
<td>31,400m³</td>
<td></td>
</tr>
<tr>
<td>Concentrated</td>
<td>5,524m³</td>
<td>-3m³</td>
<td>9,600m³</td>
<td></td>
</tr>
</tbody>
</table>

*1 The figures are just for reference when the water level of Desalination System and Evaporative Concentration apparatus are not stable.
*2 Operational Upper Limit

Before/After Desalination

- Before: 400ppm
- After: 7ppm

Before/After Evaporative Concentration

- Before: 6,900ppm
- After: 2ppm

Table of Water Transfer

- Unit 1: Approx.14,200m³
- Unit 2: Approx.22,200m³
- Unit 3: Approx.23,400m³
- Unit 4: Approx.17,500m³

Diagram of Storage Facility

- Process Main Building
- High Temperature Incinerator Building
- Used vessels

Note

- The previous update: November 13, 2012
- On November 19, target amount of water injection to reactor was changed from 120m³/day to 108m³/day.
- On November 19, target amount of water injection to reactor was changed from 156m³/day to 144m³/day.
- On November 19, target amount of water injection to reactor was changed from 156m³/day to 144m³/day.

Attachment-1

Chloride concentration

- Before: 400ppm
- After: 7ppm

Radioactivity density

- Process Main Building: 3.4E-01 Bq/cm³
- Exit of decontamination facility: 1.16E+05 Bq/cm³
- High Temperature Incinerator Building: 2.4E-05 Bq/cm³

Nuclide

- I-131: 1.2E+05 Bq/cm³
- Cs-134: 1.6E+04 Bq/cm³
- Cs-137: 3.2E+05 Bq/cm³

Place of Sampling

- Reactor Pressure Vessel: 1.1E+05 Bq/cm³
- Primary Containment Vessel: 2.4E-05 Bq/cm³
- Reactor Pressure Vessel: 3.4E-01 Bq/cm³
- Condenser: 1.16E+05 Bq/cm³

Conservation of Radioactivity (Bq/cm³)

- Process Main Building: 1.6E+04
- High Temperature Incinerator Building: 2.4E-05

Data of Cs-137 are described above.

Recent Changes

- On November 19, water transfer from Unit 2 to Unit 3 Turbine Building was stopped. On November 18, water transfer from Unit 2 to Unit 3 Turbine Building was restarted, and water transfer is in progress.
- On November 15, destination of water transfer from Unit 3 to the Process Main Building was switched to the High Temperature Incinerator Building, and water transfer is in progress.
- On November 19, water transfer from Unit 4 to the High Temperature Incinerator Building was restarted, and water transfer is in progress.
- Since October 3, Cesium Adsorption Apparatus was under operation: Availability factor 79.5% (Projected: 75%)
- Since October 3, Cesium Adsorption Apparatus was under operation: Availability factor 79.5% (Projected: 75%)
- On November 19, water transfer from the 2nd Cesium Adsorption Apparatus was switched from the Process Main Building to the High Temperature Incinerator Building.
- On November 19, water transfer from the 2nd Cesium Adsorption Apparatus was switched from the Process Main Building to the High Temperature Incinerator Building.
- Storage capacity of the concentrated saltwater receiving tank is increased by adding tanks.
Storage and treatment of high level radioactive accumulated water (November 27, 2012)

Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Water Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>High level radioactive water</td>
<td></td>
</tr>
<tr>
<td>Treated water (saltwater)</td>
<td></td>
</tr>
<tr>
<td>Treated water (concentrated waste)</td>
<td></td>
</tr>
<tr>
<td>Treated water (freshwater)</td>
<td></td>
</tr>
<tr>
<td>Freshwater</td>
<td></td>
</tr>
</tbody>
</table>

Storage and Treatment

Reactor Building
- **Unit 1**: 180m³/day, FDW - CS
- **Unit 2**: 244m³/day, FDW - CS
- **Unit 3**: 244m³/day, FDW - CS

Turbine Building
- **Unit 1**: Approx. 108m³/day, FDW - CS
- **Unit 2**: Approx. 144m³/day, FDW - CS
- **Unit 3**: Approx. 144m³/day, FDW - CS

Condenser

Storage Volume

<table>
<thead>
<tr>
<th>Facility</th>
<th>Storage Volume</th>
<th>Change from last report</th>
<th>Water level in T/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Approx. 100m³</td>
<td>-100m³</td>
<td>OP.3.216</td>
</tr>
<tr>
<td>Unit 2</td>
<td>Approx. 100m³</td>
<td>+ 900m³</td>
<td>(Unit 2 T/B)</td>
</tr>
<tr>
<td>Unit 3</td>
<td>Approx. 800m³</td>
<td>+ 400m³</td>
<td>OP.3.058</td>
</tr>
<tr>
<td>Unit 4</td>
<td>Approx. 300m³</td>
<td>+ 800m³</td>
<td>(Unit 3 T/B)</td>
</tr>
<tr>
<td>Total</td>
<td>Approx. 200m³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Storage Capacity

<table>
<thead>
<tr>
<th>Facility</th>
<th>Storage capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>700m³ *1</td>
</tr>
<tr>
<td>Unit 2</td>
<td>1,137 *4</td>
</tr>
</tbody>
</table>

Waste Produced

<table>
<thead>
<tr>
<th>Facility</th>
<th>Waste Produced</th>
<th>Change from last report</th>
<th>Storage Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Main Building</td>
<td>Sludge 597m³</td>
<td>No change</td>
<td>700m³ *1</td>
</tr>
<tr>
<td>High Temperature Incinerator Building</td>
<td>Used vessels 460 *3</td>
<td>No change</td>
<td>1,137 *4</td>
</tr>
</tbody>
</table>

Note:

- Water transfer from Unit 2 to Unit 3 Turbine Building will be temporarily suspended.
- Water transfer from Unit 3 to the High Temperature Incinerator Building was stopped, and the destination of water transfer will be switched to the Process Main Building after water transfer restarting.
- Water transfer from Unit 4 to the High Temperature Incinerator Building will be stopped.
- Operation of 2nd Cesium Absorption Apparatus is scheduled. Availability Factor 0% (Projected).
- The 2nd Cesium Absorption Apparatus was stopped due to the water leakage from the 2nd Cesium Absorption Apparatus vent line. (Restarting: To be determined.)
- Cesium Absorption Apparatus will be stopped continuously.
- Water transfer from Unit 1 Turbine Building to Unit 2 Turbine Building will be conducted.

*1 Shows the operational limit.
*2 Including approx. 0m³ (cumulative treated volume: approx. 337,820m³) of treated volume by the 2nd Cesium adsorption apparatus.
*3 Including 62 used vessels of 2nd Cesium adsorption apparatus.
*4 Storage capacity will vary according to stored used vessels of 2nd Cesium adsorption apparatus.
Simulation Results of Accumulated Water Treatment in Unit 1-4 T/B

Accumulated Water Level in Unit 2 T/B (Unit 1-2 Connected)

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Water Level [mm]</th>
<th>Volume [m³/d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/27</td>
<td>Transferred to Unit 3 T/B (1 pump)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transferred to Unit 3 T/B (1 pump)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transferred to Unit 3 T/B (2 pumps)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transferred from Unit 1 T/B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accumulated Water Level in Unit 3 T/B (Unit 3-4 Connected)

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Water Level [mm]</th>
<th>Volume [m³/d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/27</td>
<td>Transferred to the High Temperature Incinerator Building (1 pump)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transferred to the High Temperature Incinerator Building (1 pump)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transferred to the Process Main Building (1 pump)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transferred to the Process Main Building (1 pump)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transferred to the High Temperature Incinerator Building is suspended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volume of Water Stored in the Central Radioactive Waste Facility

- Cesium Adsorption Apparatus is under suspension
- Cesium Adsorption Apparatus is suspended
- Cesium Adsorption Apparatus in operation

Capacity and Storage Volume of the Concentrated Saltwater Tank

- Tank Capacity (Left Scale)
- Total Storage Amount of Concentrated Saltwater (Left Scale)
- Treated Water (Concentrated Saltwater) Receiving Tank Storage Amount (Left Scale)
- Concentrated Waste Fluid Storage Amount (Right Scale)

Note

- The treated water volume is assumed to be 780 m³/d (Subject to change depending on the level of water accumulated in T/B).
- The accumulated water level in T/B is a simulation result in consideration of fluctuation of water level such as recent rainfall, inflow of groundwater, and etc.
- The accumulated water level in T/B is assumed to increase by 5 mm daily, taking into consideration the average rain fall in the surrounding area of Fukushima Daiichi Nuclear Power Station (August-October in the past 3 years).